Decay and Low Sustainability Of Fruit Trees

Because of high-frequency irrigation under drip and microsprinkler

Antonio Lobato

Consulltant

Decay of Vines in Copiapó Valley

Decay of vines in Aconcagua Valley

Aerial Analysis of Plantations in Punitaqui Limarí Valley

Aerial Analysis of Table Grape Parronal Limarí Valley (Chlorophyll Degradation)

Old Avocado Tree (Age 60 years), Mexícola Variety San Esteban County, Aconcagua Valley

New Avocado Plantations (Age 1-3 years) On sloaping hills

2 12 2005 12:02

Avocado Plantations (Age 3-5 years) On sloaping hills

New Avocado Plantations (Age 5-7 years) On sloaping hills

New Avocado Plantations (Age 7-10 years) On sloaping hills

Result after 10 years of high-frequency irrigation Is this a good practice in fruit tree -production?

Simptoms and Indicators of Decay and Low Sustainability In fruit trees

- 1. Simptoms of foliage with low vigor and low vegetative development
- 2. High Concentration of foliar Manganese as an indicator of flooding and lack of oxygen on root zone.
- 3. Coloration and abnormal growth of primary roots and fine roots.
- 4. Varying Levels of Salinity at Different Soil Depths, and the Presence of Reductive Conditions of Grey Color.
- 5. Presence of Indicator Plants.

Simptoms of Lack of Oxygen on Canes of Vines

Vine with Few Canes and Buds (Approx. 37% of normal)

> HERRITOR PERLETTE TANETER 12 NILTER AS DANITE C TRUTELON TE SUPPORT

1

Decreasing Cane Thickness as a Sign of Decay in Vines Due To Lack of Oxygen in Roots

Lower Foliage Density in Avocado Trees As a Sign of Decay Due to Lack of Oxygen in Roots

Simptoms and Indicators of Decay and Low Sustainability In fruit trees

- 1. Simptoms of foliage with low vigor and low vegetative development
- 2. High Concentration of foliar Manganese as an indicator of flooding and lack of oxygen on root zone.
- 3. Coloration and abnormal growth of primary roots and fine roots.
- 4. Varying Levels of Salinity at Different Soil Depths, and the Presence of Reductive Conditions of Grey Color.
- 5. Presence of Indicator Plants.

Typical Foliar Analysis of Decayed Grape Vines

VARIEDAD							RANGO		
			Thompson 1	Flame seedless	Red Globe	Superior	ADECUADO		
N-TOTAL	(N)	%	3.48	3.04	3.10	3.05	2.00 - 2.40		
FOSFORO	(P)	%	0.33	0.37	0.34	0.34	0.14 - 0.45		
POTASIO	(K)	%	1.06	0.67	0.97	0.97	0.95 - 1.20		
CALCIO	(Ca)	%	1.96	2.50	1.43	1.54	1.50 - 2.40		
MAGNESIO	(Mg)	%	0.28	0.31	0.24	0.22	0.25 - 0.60		
ZINC	(Zn)	ppm	24	23	25	23	30 - 50		
MANGANESO	(Mn)	ppm	305	405	425	450	20 - 300		
FIERRO	(Fe)	ppm	151	177	170	133	60 - 100		
COBRE	(Cu)	ppm	9	6	9	7	3 - 20		
BORO	(B)	ppm	26	34	28	23	35 - 100		

Foliar Maganese Concentration on Petiols of Table Grapes in Full Bloom Stage (Each Bar represents an average of about 20 growers)

Regiones

Mn ppm

Foliar Maganese Concentration on Petiols of Grape Vines in Full Bloom Stage (Each Bar represents an average of about 20 growers)

Foliar Maganese Concentration on leaf Blade of Table Grapes in Veraison Stage (Each Bar represents an average of about 20 growers)

Regiones

Foliar Maganese Concentration on Leaf Blades of Grape Vines in Veraison Stage (Each Bar represents an average of about 20 growers)

Mn ppm

High Concentration of foliar Manganese as an indicator of flooding and lack of oxygen on root zones in Avocado Trees.

CASO 1

Localidad : La	Ligua			Especie Tejido	: Palto Hass : Hoja	
				Fecha muestreo : F.del informe :	20-03-2006 F.lng 03-04-2006	reso : 24-03-2006 Pao. 1/1
Identificación Cuar	tel	States State	Sector 5	12.52	Maria State	
Variedad			Hass			Rango
Edad Nº de Laboratorio			5			Adecuado
Nitrógeno total	(N)	*	1,89			2,00 - 2,50
Fóstoro	(P)	***********	0,19		m. States	0,10 - 0,25
Potasio	(K)	*	0,55			0,75 - 2,00
Calcio	(Ca)	×	1,13			1,00 - 3,00
Magnesio	(Mg)	×	0,51			0,25 - 0,80
				Dlant	c with	
Zinc	(Zn)	ppm	95	FIGHT	S WIIII	30 - 150
Manganeso	(Mn)	ppm	770 🔶 🗕	Se	iono	30 - 500
Ніепто	(Fe)	ppm	75	00		50 - 200
Cobre	(Cu)	ppm	9	De	COV	5 - 15
Вого	(B)	ppm	18			40 - 100
	And States	Contraction of the second		A RELIGION OF THE		

*Rango adecuado variedad Hass. Epoca de muestreo: marzo-abril. Tejido: hojas de 5 a 7 meses de edad del brote de primavera sin fruto.

High Concentration of foliar Manganese as an indicator of flooding and lack of oxygen on root zones in Avocado Trees.

CASO 2

Localidad : Combarbala

Especie : Palto Hass Tejido : Hoja

				Fecha m F.del info	uestreo : orme :	24-03-2006 03-04-2006	F.Ingre	eso : 24-03-2006 Pag. 1/1
Identificación Cuartel		S. 236	Sector	2 Sector 4	1	1436.4		
Variedad Edad N° de Laboratorio			Hass 5	s Hass 5				Rango Adecuado*
Nitrógeno total	(N)	%	2,31	2,02				2,00 - 2,50
Fósforo	(P)	%	0.16	0.18				0.10 - 0.25
Potasio	(K)	%	0.98	1.09			Sent T	0.75 - 2.00
Calcio	(Ca)	%	1,81	1,40			A1125	1,00 - 3,00
Magnesio	(Mg)	%	0,47	0,33				0,25 - 0,80
						Dianta		
Zinc	(Zn)	ppm	59	73		riants		30 - 150
Manganeso	(Mn)	ppm	116	0 🔶 820	Δ	hout t	to	30 - 500
Hierro	(Fe)	ppm	67	66		bour		50 - 200
Cobre	(Cu)	ppm	7	9		Die		5 - 15
Boro	(B)	ppm	37	35		UIC		40 - 100

*Rango adecuado variedad Hass. Epoca de muestreo: marzo-abril. Tejido: hojas de 5 a 7 meses de edad del brote de primavera sin fruto.

Foliar Analysis of Plants with Normal Levels of Manganese Concentration as a Result of Very Good aereation in the Root System

CASO 3

Localidad : La L	igua			Especie : Palto Hass Tejido : Hoja		
1.			Contraction of the State	Fecha muestreo:20-03-2006F.del informe:03-04-2006	F.Ingr	eso : 24-03-2006 Pag. 1/1
Identificación Cuarte	el		Sector 4			
Variedad			Hass		100	Rango
Edad		No Na Be	7			Adecuado
N° de Laboratorio						
Nitrógeno total	(N)	%	2,10			2,00 - 2,50
Fósforo	(P)	%	0,22			0,10 - 0,25
Potasio	(K)	%	1,40			0,75 - 2,00
Calcio	(Ca)	%	1,89			1,00 - 3,00
Magnesio	(Mg)	%	0,60			0,25 - 0,80
Zinc	(Zn)	ppm	55	Normal		30 - 150
Manganeso	(Mn)	ppm	210 🔶		11.	30 - 500
Hierro	(Fe)	ppm	110	Plants	- 6	50 - 200
Cobre	(Cu)	ppm	9			5 - 15
Boro	(B)	ppm	49			40 - 100

*Rango adecuado variedad Hass. Epoca de muestreo: marzo-abril. Tejido: hojas de 5 a 7 meses de edad del brote de primavera sin fruto.

Foliar Maganese Concentration on Leaf Blades of Avocado Trees in Different Growing Regions of Chile (Each Bar represents an average of about 20 growers)

North

Simptoms and Indicators of Decay and Low Sustainability In fruit trees

- 1. Simptoms of foliage with low vigor and low vegetative development
- 2. High Concentration of foliar Manganese as an indicator of flooding and lack of oxygen on root zone.
- 3. Coloration and abnormal growth of primary roots and fine roots.
- 4. Varying ILevels of Salinity at Different Soil Depths, and the Presence of Reductive Conditions of Grey Color.
- 5. Presence of Indicator Plants.

What is happening under the soil of these decayed plant

Washing away soil particles to expose the root system

Typical root system of a decayed plant

(NOTICE: No feeder roots present)

So, What is happening with nutrients applied

through fertigation?

Typical Red Color of roots affected by severe lack of oxygen for long periods of time

Typical Red Color of wine grape roots affected by severe flooding and lack of oxygen for long periods of time

> Abnormal upward growing pattern

rube-Dieckmar

Next Step: Beginning of Necrotic Tissue on secondary roots because of diseases

Damage on the inner part of the grape crown as a result of long periods of flooding and lack of oxygen

Typical Red Color of roots affected by severe lack of oxygen for long periods of time

Plum Tree Root System

What happened in avocado trees?

Fine roots with weak cuticle

12.13.2004 12:22
Typical Red Color of roots affected by severe lack of oxygen for long periods of time

Typical Red Color of roots affected by severe flooding and lack of oxygen for long periods of time

Abnormal upward growing pattern Damage on the inner part of the avocado crown as a result of long periods of lack of oxygen

Same symptoms in two different species (Avocados and Grapes)

Normal Root System

5SA

Typical Red Color of roots affected by severe lack of oxygen for long periods of time

24.01.2006

Gradients of red coloration throughout time affected by lack of oxygen

Simptoms and Indicators of Decay and Low Sustainability In fruit trees

- 1. Simptoms of foliage with low vigor and low vegetative development
- 2. High Concentration of foliar Manganese as an indicator of flooding ann lack of oxygen on root zone.
- 3. Coloration and abnormal growth of primary roots and fine roots.
- 4. Varying Levels of Salinity at Different Soil Depths, and the Presence of Reductive Conditions of Grey Color.
- 5. Presence of Indicator Plants.

Symptoms of tip burn as a result of high salinity levels in a non-saline soil

12.2005

3 different colors in a uniform soil profile as a nexult of different meter conterns

03.05.2005 09:15

Blueberries

Simptoms and Indicators of Decay and Low Sustainability In fruit trees

- 1. Simptoms of foliage with low vigor and low vegetative development
- 2. High Concentration of foliar Manganese as an indicator of flooding and lack of oxygen on root zone.
- 3. Coloration and abnormal growth of primary roots and fine roots.
- 4. Varying Levels of Salinity at Different Soil Depths, and the Presence of Reductive Conditions of Grey Color.

5. Presence of Indicator Plants.

12.13.2004 16:35

Reasons for decay and low sustanability

- 1. Irrigation technique
- 2. Physical and chemical fertility of the soil
- 3. Physiological response of roots
- 4. Agronomic quality of irrigation water
- 5. Diseases and plantation problems
- 6. Abnormal wetting patterns of soils under drip irrigation

Short and frequent irrigation

The paradigm of irrigation and its effect on the mid and long term.

Anoxia Soil crusting

Reasons for decay and low sustanability

- 1. Irrigation technique
- 2. Physical and chemical fertility of the soil
- 3. Physiological response of roots
- 4. Agronomic quality of irrigation water
- 5. Diseases and plantation problems
- 6. Abnormal wetting patterns of soils under drip irrigation

Volume and specific surface relationship

Surface: 2x2x6= 24 cm²

 $1 \times 1 \times 6 \times 8 = 48 \text{ cm}^2$

This soil was prepared at too low soil water levels. The structures seen here are the direct result. Roots do not penetrate these structures.

A well prepared soil.

Loss of volume of soil and physical fertility

oil crusting as impediment for water infiltrati

Calcium carbonate crystals

Citrus Standing Water in a Severely Compacted Field

Reasons for decay and low sustanability

- 1. Irrigation technique
- 2. Physical and chemical fertility of the soil
- 3. Physiological response of roots
- 4. Agronomic quality of irrigation water
- 5. Diseases and plantation problems
- 6. Abnormal wetting patterns of soils under drip irrigation

Pattern of growth in grape vine roots

Soil Profile Saint-Julien

Grape vine roots up to 6 meters depth

23.10.2008

Reasons for decay and low sustanability

- 1. Irrigation technique
- 2. Physical and chemical fertility of the soil
- 3. Physiological response of roots
- 4. Agronomic quality of irrigation water
- 5. Diseases and plantation problems
- 6. Abnormal wetting patterns of soils under drip irrigation

Effect of gypsum as ammedment applied through water irrigation in Lontué river because of low salt contents (VII Region, Chile)

Conductividad eléctrica

Reasons for decay and low sustanability

- 1. Irrigation technique
- 2. Physical and chemical fertility of the soil
- 3. Physiological response of roots
- 4. Agronomic quality of irrigation water
- 5. Diseases and plantation problems

6. Abnormal wetting patterns of soils under drip irrigation

What is the evolution of these plants in the future?

20.05.2006 10:43

San Juan Argentina

Wine grape: severe attack of crown galls

Wine grape: severe attack of nematodes.

Grape Vine: Severe attack of Philoxera

15.03.2006 17:07

15.03.2006 17:08

Reasons for decay and low sustanability

- 1. Irrigation technique
- 2. Physical and chemical fertility of the soil
- 3. Physiological response of roots
- 4. Agronomic quality of irrigation water
- 5. Diseases and plantation problems

6. Abnormal wetting patterns of soils under drip irrigation

Wetting pattern of Chilean soils The great paradox

Well irrigated soil

Clay loam soil with a narrow wetting pattern under drip irrigation

Symptoms on foliage because of dry root zones in a full irrigated orchard

Grape Vines Planted in a sandy soil with 100% of wet soil Under drip irrigation

Soil profile San Julián, Ovalle. Chile

31.03.2006 18:29

Method for the Recuperation of Decayed Agricultural Plantations

(M.R.P.D.F.)

US Patent Granted 2005

Authors

Antonio Lobato Eduardo Alonso

Basic principles of Method for the Recuperation of Decayed Agricultural Plantations

Irrigation

- 1. *"Irrigation period is for soils, and should be enough to reach the deepest roots. This is a fundamental tool in order to introduce oxygen to the soil profile."*
- 2. "Irrigation frequency is for plants, and depends on the species, age, and the phenological stage."
- 3. "Water distribution should be applied sufficiently so as not to leave the roots in dry zones."

Ammendments

- 1. Sulfuric acid as a chemical tool to eliminate soil crusting and improve water infiltration.
- 2. Calcium sulfate as a tool to improve porosity and physical fertility of soils.

Stimulation of New Root Growth

Use of Chitosan (poli-D-glucosamina) as a molocule which inducts SAR responses in plants such as an increase in the volume of roots.

Validation Experiment of the Method for the Recuperation of Decayed Agricultural Plantations

Experiment: Two methods of water application in grape vines. Muscat of Alexandria variety. Ovalle, 1996

Soil Profile San Julián, Ovalle

Daily irrigation according to the ETc

14 continuous hours of irrigation every 3 days

Cluster aspect under daily irrigation

Cluster aspect under new method

Both methods use the same amount of water but with absolutely different results !!! Effect of Two methods of water application in grape vines. Muscat of Alexandria variety. Ovalle, 1996

Treatment	Shoot growth (cm)	Yield/ plant (kg)	Bunches/ plant (N°)	Bunch Weight (kg)	Sugar content (°Brix)
Daily irrigation	47,11 a	19,76 a	73 a	270 a	21,2 a
Non daily irrigation	68,31 b	42,13 b	92 b	456 b	20,0 a

Letras iguales no difieren estadísticamente entre sí. Duncan p<0.05

Training of personnel in soil characteristics and root conditions during the irrigation period using the method analysis of Soil pit

Deep Soil Pit in order to observe wetting patterns, root growth, under the new method

Fluctuation of water content at three depths using two different methods of irrigation Maipo Valley, Chile

Fluctuation of water content at three depths using Method for the Recuperation of Decayed Agricultural Plantations

Maipo Valley, Chile

Perfect synchronicity between periods of irrigation

Increased porosity after calcium sulfate application

New roots growing in a damaged secondary root as a result of new method of irrigation

Condition of roots prior to treatment

Generation of new roots after treatment

Thank you very much!